On the System of Diophantine Equations x2 − 6y2 = −5 and x = az2 − b

نویسندگان

  • Silan Zhang
  • Jianhua Chen
  • Hao Hu
چکیده

Mignotte and Pethö used the Siegel-Baker method to find all the integral solutions (x, y, z) of the system of Diophantine equations x (2) - 6y (2) = -5 and x = 2z (2) - 1. In this paper, we extend this result and put forward a generalized method which can completely solve the family of systems of Diophantine equations x (2) - 6y (2) = -5 and x = az (2) - b for each pair of integral parameters a, b. The proof utilizes algebraic number theory and p-adic analysis which successfully avoid discussing the class number and factoring the ideals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$

In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.

متن کامل

Integer Solutions of Some Diophantine Equations via Fibonacci and Lucas Numbers

We study the problem of finding all integer solutions of the Diophantine equations x2 − 5Fnxy − 5 (−1) y2 = ±Ln, x2 − Lnxy + (−1) y2 = ±5F 2 n , and x2 − Lnxy + (−1) y2 = ±F 2 n . Using these equations, we also explore all integer solutions of some other Diophantine equations.

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

Pell ’ s Equation

An arbitrary quadratic diophantine equation with two unknowns can be reduced to a Pell-type equation. How can such equations be solved? Recall that the general solution of a linear diophantine equation is a linear function of some parameters. This does not happen with general quadratic diophantine equations. However, as we will see later, in the case of such equations with two unknowns there st...

متن کامل

ON CONSECUTIVE INTEGERS OF THE FORM ax2; by2 AND cz2

have a solution in positive integers (x, y, z) other than that given by x = 5, y = 7 and z = 4. A negative answer to this question follows from a classical result of Ljunggren [8], as recently refined by Cohn [4]: Theorem 1.1. Let the fundamental solution of the equation v2−Du2 = 1 be a + b √ D (i.e. (v, u) = (a, b) is the smallest positive solution). Then the only possible solutions of the equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014